
www.manaraa.com

Parallel Data Structures for Symbolic ComputationKatherine Yelick, Soumen Chakrabarti, Etienne Deprit, Je� Jones,Arvind Krishnamurthy, and Chih-Po WenU.C. Berkeley, Computer Science Divisionfyelick,soumen,deprit,jjones,arvindk,cpweng@cs.berkeley.edu �Draft: To appear in Parallel Symbolic Languages and Systems, October 1995
AbstractSymbolic applications often require dynamic irregular data structures, such as linked lists, un-balanced trees, and graphs, and they exhibit unpredictable computational patterns that lead toasynchronous communication and load imbalance when parallelized. In this paper we describe sev-eral symbolic applications and their parallelizations. The main problem in parallelization of eachapplication was to replace the primary data structures with parallel versions that allow for highthroughput, low latency access. In each case there are two problems to be solved: load balancing theparallel computation and sharing information about the solution as it is being constructed. The �rstproblem is typically solved using a scheduling data structure, a stack, queue, or priority queue insequential programs. The di�culty in parallelizing these structure is the trade-o� between localityand load balancing: aggressive load balancing can lead to poor locality. The second problem ofstoring the solution depends much more on the type of solution, but range from simple scalar valuesto sets or tables. These structures use partitioning, full replication, or dynamic caching in theirparallelizations.In sequential programming environments, common data structures are often provided throughreusable libraries. We have built a parallel analog to these libraries, called Multipol. Multipolsupport irregular and asynchronous applications, including symbolic applications, discrete eventsimulation, and adaptive algorithms. The performance issues in Multipol include masking remotelatency, elimination of communication, load balance, performance portability across machines, andlocal node performance.1 IntroductionThis paper reports on several case studies of parallel symbolic applications and the parallel data struc-tures within them. It also describes systems support in the form of a parallel data structure library thatmakes such applications easier to develop. In our experience, each application contains a small numberof data structures that need to be replaced when developing a parallel version; in symbolic applications,these often fall into two categories. The �rst category is scheduling structures such as stacks, queues,or priority queues. These structures hold data items that represent the set of tasks to be computed, so�This work was supported in part by the Advanced Research Projects Agency of the Department of Defense undercontracts DABT63-92-C-0026 and F30602-95-C-0136, by the Department of Energy grant DE-FG03-94ER25206, and bythe National Science Foundation grants CCR-9210260, CDA-8722788, and CDA-9401156. The information presented heredoes not necessarily reect the position or the policy of the Government and no o�cial endorsement should be inferred.1

www.manaraa.com

the key issue in parallelization is to load balance these tasks without destroying locality properties orviolating dependencies between tasks that lead to incorrect semantics or unnecessary work. The secondclass of data structures hold shared information about the current approximation to or partial versionof the �nal solution. In search problems, for example, this might be a representation of the best solutionso far or cut-o� values to prune the search space.In contrast to these symbolic applications, most scienti�c and engineering applications are physicalsimulations in which at least one of the key data structures is the representation of the physical domain.Some examples include uid ow simulation with a regular or unstructured mesh placed over the uid,n-body simulations with a set of particles in physical space, or event-driven simulation with loosely-coupled processes are connected by logical channels over which events are passed. Even the most irregularsimulations problems have one important advantage over symbolic applications: locality properties inthe physical domain domain lead to locality in the parallel implementation; entities near each other inspace are more likely to a�ect each other than ones far away. In symbolic applications, locality maybecome a design concern, but does not usually arise from a physical notion of locality.In this paper, we report on our experience with several parallel applications on both shared anddistributed memory machines. First, we show that even the challenging class of symbolic applicationscan result in e�ective use of parallel machines, including distributed memory multiprocessors. Since oneof the key problems is parallel data structure development, we have developed a data structure librarycalled Multipol. We give an overview of some of the Multipol structures and the underlying systemconcepts that enable portability and high performance.2 The ApplicationsIn this section we give a brief description of our symbolic applications and the high level data structuresthat are replaced during parallelization. In each case we identify two data structure requirements:a scheduling structure to hold the set of tasks being generated and a solution structure to hold anapproximation to or partial version of the �nal result. In two cases, the same data structure will playboth roles. The applications were not chosen for their similarity, but a common property is that all of2

www.manaraa.com

the solution structures have some type of monotonicity that allows out-of-date or incomplete versionsto be used.For precise problem statements, alternate approaches, related work and complete descriptions of ourimplementations, we refer the reader to more extensive papers. Most of the applications were written fordistributed memory multiprocessors, but as a means of comparison, we also discuss two shared memoryapplications: the Knuth-Bendix procedure and term matching.2.1 Knuth-BendixThe Knuth-Bendix procedure is used in automatic theorem proving systems based on ordered equationscalled rewrite rules. Given a set of rewrite rules, the procedure computes a new set that is in some sensecomplete, which allows for easy and e�cient proofs in the resulting system [KB70]. The procedure mayalso fail to terminate or may halt unsuccessfully, although the reasons for these behaviors and techniquesto help avoid them are beyond the scope of this discussion. The computation involves addition of newrewrite rules, called critical pairs, and the simpli�cation of existing rules. New rules are discovered byconsidering each pair of existing rules: a potential new rule is computed and simpli�ed using existingrules, and if it survives the simpli�cation process it is added to the set.The creation and simpli�cation of new rules constitutes the bulk of the work, so the data structurethat holds pairs of rules is the primary scheduling structure in the parallel implementation [YG92]. Theordering of pairs within this scheduling queue is quite exible, although a fairness must be guaranteed(pairs cannot be left in the queue forever) and if some rule pairs are favored over others, unnecessarywork can be avoided. The parallel solution is a task queue: each processor has its own queue of pairs,ordered by heuristics, and when a processor runs out of tasks it steals them from another processor'squeue [RV89]. Even on a four processor shared memory machine, a centralized task queue proved to bea bottleneck, so a distributed version is used.As the computation proceeds, the set of rewrite rules progresses toward completeness, so the setitself is the approximate solution. The elements of the rewrite rule set need to satisfy a property ofpairwise irreducibility, which is stronger than the usual uniqueness property on elements of a set, and3

www.manaraa.com

introduces the need for concurrency control. The representation of choice for the set is replication, or atleast partial replication, because the set is much more frequently read than written. When new rules arebeing reduced, some or all of the existing rules from the set are needed, thereby generating frequent reads.Fortunately, most rules reduce to something trivial and are thrown away, so write accesses demands arelow. Because we used a shared memorymachine for the Knuth-Bendix, the underlying hardware handledreplication, whereas in the distributed memory Gr�obner basis code described below, replication is doneexplicitly within the set data structure.2.2 Term MatchingMatching procedures take two logical terms as inputs, a pattern and a variable-free target, and it producesa substitution of terms for variables that makes the two inputs equal. If no such matching substitutionexists, the procedure signals a failure. Term matching arises in logic programming, term rewriting, andother rule-based systems and represents a class of algorithms that traverse trees or graphs, although inpractice most terms being matched are too small to justify large scale parallelization.The sequential matching algorithm is recursive, so the program stack is the scheduling structure tobe parallelized [Yel90]. As in Knuth-Bendix it is replaced by a task queue, in this case using orderof insertion as the priority, i.e., each local queue is FIFO. The solution to a matching problem is asubstitution | a mapping from variables to terms | that starts out as the identity mapping and growsto the �nal result or becomes an over-constrained failure value if one variable is assigned multiple values.The ratio of reads to writes is lower than for the Knuth-Bendix rewrite rule set, so replication is not aclear choice. On a distributed memory machine we might choose a partitioned or hash table or one withdynamic caching, but on shared the shared memory machine we use a centralized structure and leavecaching decisions to the underlying hardware.2.3 EigenvalueOur �rst distributed memory application is not symbolic, but is a classic example of a search problem,and therefore falls into the category of interest for our study. We also have implementations of other4

www.manaraa.com

search problems, including the over-used n-queens example and traveling salesman problem, but thebasic principles are the same. The scheduling structure in each case is some type of task queue thathold nodes from the search tree. The solution structure may be something a simple as a single value: inbranch and bound algorithms, the bound represents a current approximation to the solution.The bisection algorithm for computing the eigenvalues, an algorithm used in the ScaLAPACK library,is also a search problem [DDvdGW93]. A symmetric tridiagonal N � N real matrix is known to haveN real eigenvalues and it is easy to �nd an initial range on the real line containing all eigenvalues.Then, given a real number x, it is possible to calculate how many of the N eigenvalues are less than x.This primitive can be used to successively subdivide the real line and locate all eigenvalues to arbitraryprecision.A parallel implementation of bisection can use a static subdivision of the initial range, but this haspoor parallel e�ciency if the eigenvalues are clustered, because the work load is not balanced [DDR94].A solution is to use a task queue with load balancing for the scheduling structure. Because our machinetarget is now a distributed memory multiprocessor, locality is a more obvious concern, but for bisection,the tridiagonal matrix is relatively small and can be statically replicated, so the only data associatedwith each task is the endpoints of their interval. A simple randomized scheduler sends each task to arandom processor upon insertion. This scheduling structure is called RandQue in Multipol; it has poorlocality properties if there is an advantage to executing tasks on the processor that created them, but isadequate for the bisection algorithm [CRY94].The intervals stored in the RandQue act as the approximate solution as well as the scheduling struc-ture. As the intervals shrink, the approximation improves until a solution of the desired accuracy isobtained. We will observe this phenomenon of a single data structure playing both roles in one otherapplication, the Tripuzzle.2.4 Gr�obner BasisThe Gr�obner basis program is a completion procedure, like Knuth-Bendix, but it manipulates poly-nomials rather than rewrite rules and is guaranteed to terminate successfully. From a high level, the5

www.manaraa.com

computation is very similar: for each pair of polynomial a new polynomial is computed; if the newpolynomial is shown to be an linear combination of existing ones it is eliminated, otherwise it is addedto the set.The concurrency control in Gr�obner is somewhat simpler than in Knuth-Bendix, but the key dif-ference in our implementations is the use of distributed memory for Gr�obner basis. A representationfor the polynomial pairs is not di�cult, since this data structure was already partitioned in the sharedmemory case. The RandQue provides good load balance assuming locality is not a concern. The basisof polynomials has the same performance requirements as the set of rewrite rules in Knuth-Bendix |reads are much more frequent than writes | but the underlying hardware no longer provides automaticreplication. One software option is full replication, whereby each polynomial is broadcast when addedto the basis. However, polynomials can be large and the processors are not synchronizationed, so thisdisrupts the computation and leads to poor processor utilization. Instead, we use software cachingwith a Multipol data structure called ObjLayer. Object caching avoids false sharing and fragmentationproblems of hardware caches, but has higher address translation overhead. It also has an advantageof exibility: we use a consistency protocol that is speci�c to the data structure, and make schedulingdecisions based on cache state. For example, when new polynomials are added or old ones simpli�ed,other processors may have stale or incomplete copies of the basis. Fortunately, this does not preventthem from doing useful work. When a processor �nds a polynomial that appears to be new, i.e., did notreduce to zero, it locks the basis, obtains a consistent copy of all elements, performs one �nal check onreducibility, and �nally adds the polynomial.The locking solves the consistency problems and enforces the uniqueness of elements, but it can lead toperformance bottlenecks as processors wait for locks. To avoid these overheads, we use multi-threading.If a processor cannot acquire the basis lock to perform the desired task, it suspends the current work andpicks up something unrelated. Multi-threading support is built into the Multipol runtime layer and isdone at user level to avoid the costs of saving complete thread contexts. As with caching, some hardwaredesigners would place multi-threading support into the hardware. This may lower the cost of threadingoperations, but gives up some exibility. In our approach, the library designer can decide whether a6

www.manaraa.com

cache miss may be ignored (because the value is not essential) or should result in a change of context.2.5 Phylogeny ProblemThe problem of determining the evolutionary history for a set of species, known as the phylogeny problem,is fundamental to molecular biology. Evolutionary history is typically represented by a phylogeny tree,a tree of species with the root being the oldest common ancestor and the children of a node being thespecies that evolved directly from that node. Each species in a set is represented by a set of traits orcharacter values. One technique for solving the phylogeny problem, called character compatibility, is tosearch through the power set of characteristics to see which ones are in a sense consistent. The notionof consistency in this problem is the existence of a particular kind of phylogeny tree called a perfectphylogeny tree. The speci�cs are not important. What is important is the structure of the search space(a power set) and the following property of the perfect phylogeny trees: if none exists for some set ofcharacters S (the set is inconsistent), then none exists for any superset of S.Although the search space has a known structure, the above property allows for unpredictable prun-ing, which leads to load imbalance. The RandQue data structure is not appropriate in this application,because there locality is important. However, work stealing, using the TaskStealer data structure inMultipol, provides load balance that is almost as good as RandQue, but with better locality. (Workstealing is provably optimal, in the same sense that randomized task sharing is [BL94].) The basicdi�erence is that TaskStealer leaves tasks on the processor that created them until another processorbecomes idle. The TaskStealerwas originally used in the Eigenvalue and Gr�obner basis problems, untilthe simpler RandQue proved to work as well [CRY94].The choice of a data structure for holding a partial solution is more di�cult in Phylogeny than inthe other search problems, because we need a representation of the result (success or failure) of everynode searched so far. Fortunately, because the structure of the search space, this information can becompressed using a trie, but the trie should ideally be shared between processors. We use a lazilyreplicated trie with global synchronization points for making the shared copies consistent.7

www.manaraa.com

2.6 TripuzzleThe Tripuzzle problem is to compute the set of all solutions to a single player board game. The parallelismcomes from considering a set of moves simultaneously, and the solution is the set of all moves that resultin a winning game. The parallel algorithm is bulk-synchronous. At each step, all processors lookat a set of resulting boards from the previous step and compute the set of legal moves. As in theEigenvalue problem, a single data structure is use to load balance the computation and to store thecurrent approximate solution. The data structure is a partitioned hash table: if the same board is foundfrom two di�erent series of moves, they will clash in the hash table and be collapsed; the hashing functiondistributes elements of the hash tables across processors and therefore also acts as a load balancer. Theprocessors look at the local portion of their hash table when computing the next step.3 Multipol DesignMultipol is a publicly available library of distributed data structures, designed for distributed memorymultiprocessors. One of the �rst priorities in any software support for large scale multiprocessors hasto be performance. In Multipol, the design of clean interfaces and portability are also high priorities,although some compromises are made to the interface to satisfy performance demands. The overheads ofparallelization comprise the time the processors spend doing useless computation, i.e., computation thatis not required by the sequential implementation, the time they spend in communication, and the timethey are idle. Each type of overhead is reduced in Multipol code using a combination of the techniquesoutlined below.3.1 Latency MaskingThe latency of remote operations can cause idle time if the processor waits for the operation to complete.A remote operation simply reads or writes remote memory or executes a small remote procedure, forexample, a lock acquisition. Thus, the term latency refers to both the message transit time and thetime required for remote processing. The remote computation time is not necessarily overhead, but time8

www.manaraa.com

spent waiting for completion is. The total latency can be quite large when the network is slow, whenthe application has highly irregular communication patterns that make it impossible to make optimalscheduling decisions, or when the remote requests require nontrivial computation time.Techniques such as pipelining remote operations and multithreading can be used to hide latency.Even on a machines like the CM-5 with relatively low communication latency, the bene�ts from messageoverlap are noticeable: message pipelining of simple remote read and write operations can save as muchas 30% [KY94] and overlap of higher level operations in the Gr�obner basis application saves about 10%.On workstation networks with longer hardware latencies and expensive remote message handlers, thesavings should be even higher.The latency hiding techniques require the operations be nonblocking, or split-phase. In Multipol,operations that would normally be long-running with unpredictable delay are divided into separate �xed-length threads. Multipol operations execute local computation and may initiate remote communication,but they never wait for remote computation to complete. Instead, long-running operations take asynchronization counter as an argument, which the caller can use to determine if the operation hascompleted. This leads to a relaxed consistency model for the data types, which is weaker than eithersequential consistency [Lam79] or linearizability [HW90]. A operation completes sometime between theinitiation and synchronization point, but no other ordering is guaranteed.Several applications can take advantage of relaxed consistency models. For bulk-synchronous prob-lems such as EM3D [CDG+93], cell simulation [Ste94], and n-body solvers, data structure updates aredelayed until the end of a computation phase, at which point all processors wait for all updates to com-plete. In Gr�obner basis and the phylogeny application, which have characteristics of a search problem,the set of \found" values are stored in a lazily updated structure.3.2 LocalityLocality is crucial when communication cost is large. One way to improve locality is to reduce the vol-ume of communication. Techniques for reducing communication can be either static or dynamic. Statictechniques include partitioning, which attempts to divide up the data set into loosely dependent parti-tions among the processors, and replication, which keeps a copy of mostly-read data on each processor.9

www.manaraa.com

Dynamic techniques include caching, which maintain multiple copies of the data depending on the itsruntime usage. For these techniques, relaxed consistency may be used to further reduce communication.Many applications can take advantage of these relaxed data structures because there is no strictordering on updates. In the phylogeny application and Gr�obner basis problem, not only are updates tothe global set of results lazy, but each processor keeps partially completed cached copies of this set. Thisyields a correct, albeit di�erent, execution than the sequential program [CY93, JY95].3.3 Communication Cost ReductionSome communication cannot be avoided, but its cost can be reduced by minimizing the number ofmessages (as opposed to the volume) and by using less expensive unacknowledged messages. For machineslike the Paragon and workstation networks, which have high communication start-up (known as � inthe � � � cost model), the former is very important. Many small messages are aggregated into onelarge physical message to amortize the overhead. Several other systems, including Parti and LPARX,also use message aggregation. Even for machines such as CM5, which have small hardware packets andtherefore a nearly �xed overhead per word, it may still be advantageous to aggregate messages to reducethe amount of ow-control communication for sending arbitrary-sized messages which cannot �t into amachine packet. Message aggregation can be performed statically by the programmer, or dynamicallyby the runtime system.The second technique for reducing communication cost is to avoid acknowledgement tra�c. Acknowl-edgements may consume a signi�cant fraction of available bandwidth when the messages are small. Inthe hash table, a factor of 2 in performance was gained when split-phase inserts with acknowledgementswere replaced by batches of inserts followed by periodic global synchronization points.3.4 Multi-ported StructuresIn addition to communication overhead, many parallel applications lose performance on the local com-putation. Languages that support a global view of distributed data structures, for example, may incurcosts from translating global indices into local ones [Ste94] or from checking whether a possibly remoteaddress is actually local [CDG+93]. Message passing models in which objects cannot span processor10

www.manaraa.com

boundaries avoid these overheads, but lose the ability to form abstractions across processors. We pro-pose a compromise, which each data structure has both a local view, which refers to the sub-objectthat is on the processor, and the global view, which refers to the entire distributed data structures.For example, many of the data structures allow for iteration over the local components of the object,and for operations that modify or observe only at the local data. In this sense, the data structures aremulti-ported: each processor has its own fast handle to a structure, while access to the global structureis also permitted.3.5 Load BalanceLoad balance of data structures requires that the data be spread evenly among the processors to avoidhot spots. Scheduling involves the assignment of tasks to processor to keep all processors busy. Thereis typically a trade-o� between locality and load balance which can be resolved used either static ordynamic techniques. For data structures with high remote access costs, static load balance and schedulingtechniques such as the owner-compute rule can be used to reduce communication. For data structureswith little remote access cost, dynamic strategies such as randomization can be used to increase processore�ciency. A mixed strategy where dynamic scheduling is combined with locality considerations is alsopossible.4 The Multipol Runtime LayerA Multipol program consists of a collection of threads running on each processor, where the numberof physical processors is exposed so that the programmer can optimize for locality. Multipol threadsserve two purposes. They are invoked locally to hide the latency of split-phase operations and can alsobe invoked remotely to perform asynchronous communication. The Multipol runtime system providessupport for thread management, as well as a global address space spanning the local memory of allprocessors. In this section, we describe the runtime support in Multipol.11

www.manaraa.com

4.1 Overview of Multipol threadsMultipol threads are designed to facilitate the composition of multiple data structures, and the portingof the runtime system. This section describes the features of Multipol threads and explains our designdecisions.Multipol threads run atomically to completion without preemption or suspension. Atomicity ofthread execution reduces the amount of locking required, and makes it easy to implement commonread-modify-write operations. Since threads are not preempted, spinning is prohibited { to suspenda computation awaiting the result of a long latency operation, the thread that issues the operationexplicitly creates a continuation and passes the required state. The issuing thread then terminates, andits continuation thread can be scheduled to resume the computation when the result becomes available.Synchronization between the continuation thread and the completion of the operation is achieved bywaiting for a counter to exceed a given value.Because the programmer explicitly speci�es the state to be passed to the continuation, there is noneed to implement a machine dependent thread package for saving the processor state and managingseparate stacks. Our approach improves the portability of the runtime system, and may have lowerthread overheads for machines with large processor states.The runtime system provides a two-level scheduling interface for threads. The programmer canwrite custom schedulers to schedule the data structure or application threads. The runtime system,for example, uses a FIFO scheduler for interprocessor communication, and applications such as discreteevent simulators can have their own priority based schedulers. The top-level system scheduler guaranteesthat each custom scheduler is called once within �nite time, and the frequency of calls can be con�guredby the programmer.The scheduling interface localizes scheduling decisions to the custom schedulers, which can be individ-ually �ne-tuned for performance. It also facilitates the composition of data structures, or the additionof new runtime support. The scheduling policy used by one data structure can be changed withoutintroducing anomalies, such as unexpected livelock or deadlock, into other parts of the program.The Multipol threads are designed for direct programming, in contrast to compiler-controlled threads12

www.manaraa.com

such as TAM [CSS+91], in that Multipol provides more exibility such as arbitrary size threads and cus-tom schedulers. A set of macros can be used to facilitate programming. These macros make the Multipolprograms resemble sequential programs with blocking operations (as opposed to thread continuationswith split-phase operations).4.2 The Multipol communication primitivesThe runtime system supports two types of communication primitives: remote thread invocation and bulkaccesses of the global memory. A thread may be invoked on a remote processor to perform asynchronouscommunication, such as requesting remote data, or to generate more computation, such as dynamicallyassigning work to processors. Invoking a remote thread is a non-blocking operation which returnsimmediately, and its completion guarantees that the remote thread will be invoked in �nite time. Theprogrammer can also use bulk, unbu�ered put and get primitives to access remote data. The put and getoperations are split-phase operations which use a counter to synchronize the calling computation whenall data arrive at the destination.The runtime system aggregates messages to improve communication e�ciency for programs thatgenerate many small, asynchronous messages. These messages are accumulated into large physicalmessages to better amortize the communication start-up overhead. Experiments with a circuit simulationapplication and the Tripuzzle example show that message aggregation can reduce the running time byas much as 50% on machines such as the IBM SP1.5 PerformanceThe speedups of the distributed memory applications are shown in the following �gure. These numberswere all taken on a 32 processor Thinking Machines CM5 multiprocessor. The performance of theseapplications, like many symbolic problems, is highly dependent on the input, and there is no obviousnotion of problem scaling. 13

www.manaraa.com

Speedup

20
 Processors

3010

10

30

20

Eigen

Phylogeny

Tripuzzle

Grobner

6 ConclusionsWe have described several parallel symbolic applications and shown that common programming tech-niques, software caching, replication and dynamic load balancing can be used across applications, andin some cases the data structures themselves can be re-used. We identi�ed two types of data structuresthat are common in symbolic applications, one used for load balancing and another used for sharingpartial solutions.The Multipol library �lls the gap in the parallel software tools for programming irregular applica-tions on distributed memory machines. We have identi�ed some of the primary performance issues inthe Multipol design, namely, locality, load-balance, latency hiding, and communication elimination, and14

www.manaraa.com

gave an overview of our solution based on a multi-threaded runtime layer. The split-phase interfaces inMultipol are a concession to performance demands, and while they complicate the interface from theclient's perspective, they signi�cantly improve performance on distributed memory machines. The useof one-way communication eliminates acknowledgement tra�c and is a signi�cant performance enhance-ment for data structures with small messages. The multi-ported aspect of the structures allows the usersto switch between global and local views, providing the abstraction of the former and performance ofthe latter.The irregular applications described here represent some of the more challenging problems for paral-lelism. We believe that the library approach is a good compromise between hand-coded, machine-speci�capplications, and approaches based entirely on high level languages and compilers.References[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations bywork stealing. In Thirty-Fifth Annual Symposium on Foundations of Computer Science(FOCS '94), pages 356{368, November 1994.[CDG+93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy, StevenLumetta, Thorsten von Eicken, and Katherine Yelick. Parallel programming in Split-C.In Supercomputing '93, pages 262{273, Portland, Oregon, November 1993.[CRY94] Soumen Chakrabarti, Abhiram Ranade, and Katherine Yelick. Randomized load balanc-ing for tree-structured computation. In Proceedings of the Scalable High PerformanceComputing Conference, Knoxville, TN, May 1994.[CSS+91] D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain Parallelismwith Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Machine. InProc. of 4th Int. Conf. on Architectural Support for Programming Languages and Operat-ing Systems, Santa-Clara, CA, April 1991. (Also available as Technical Report UCB/CSD91/594, CS Div., University of California at Berkeley).15

www.manaraa.com

[CY93] Soumen Chakrabarti and Katherine Yelick. On the correctness of a distributed memoryGr�obner basis computation. InRewriting Techniques and Applications, Montreal, Canada,June 1993.[DDR94] J. Demmel, I. Dhillon, and H. Ren. On the correctness of parallel bisection in oatingpoint. Tech Report UCB//CSD-94-805, UC Berkeley Computer Science Division, March1994. available via anonymous ftp from tr-ftp.cs.berkeley.edu, in directory pub/tech-reports/csd/csd-94-805, �le all.ps.[DDvdGW93] J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker. LAPACK for distributedmemory machines: the next generation. In Proceedings of the Sixth SIAM Conference onParallel Processing for Scienti�c Computing. SIAM, 1993.[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition forconcurrent objects. ACM Transactions on Programming Languages and Systems, pages463{492, July 1990. A preliminary version appeared in the proceedings of the 14th ACMSymposium on Principles of Programming Languages, 1987, under the title: Axioms forconcurrent objects.[JY95] J. Jones and K. Yelick. Parallelizing the phylogeny problem. In Supercomputing '95,December 1995. To appear.[KB70] Donald E. Knuth and Peter B. Bendix. Simple Word Problems in Universal Algebras,pages 263{297. Pergamon, Oxford, 1970.[KY94] Arvind Krishnamurthy and Katherine Yelick. Optimizing parallel spmd programs. InProceedings of the Workshop on Languages and Compilers for Parallel Computing, August1994.[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-process programs. IEEE Transactions on Computers, C-28(9):690{691, September 1979.16

www.manaraa.com

[RV89] Eric Roberts and Mark Vandevoorde. Work crews: An abstraction for controlling paral-lelism. Technical Report 42, Digital Equipment Corporation Systems Research Center,Palo Alto, California, 1989.[Ste94] Stephen Steinberg. Parallelizing a cell simulation: Analysis, abstraction, and portability.Master's thesis, University of California, Berkeley, Computer Science Division, December1994.[Yel90] Katherine A. Yelick. Using Abstraction in Explicitly Parallel Programs. PhD thesis, MITLaboratory for Computer Science, Cambridge,MA 02139, December 1990. Also appearedas MIT/LCS/TR-507, July 1991.[YG92] Katherine A. Yelick and Steven J. Garland. A parallel completion procedure for termrewriting systems. In Conference on Automated Deduction, Saratoga Springs, NY, 1992.

17

